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Synchronization waves in arrays of driven chaotic systems
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Chaotic synchronization has been observed experimentally and numerically in arrays of Chua’s circuits,
arranged in both linear and ring geometries, that are coupled by using the method recently introduced by
Guemez and Maas[Phys. Rev. B52, R2145(1995]. For open linear geometries, the chaotic cells are seen to
synchronize consecutively asgnchronization wavepreads through the array. Instead, for circular loops it is
found that there is a critical number of cells above which the uniform synchronized state is not stable.
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Synchronization among coupled nonlinear oscillators isvhere a=C,/C;, B=C,/(LG?), and y=(C,ro)/(LG).
pervasive in naturésee, e.g., Ref.1]). Although counterin- The three-segment piecewise-linear characteristic of the non-
tuitive at first sight, synchronization has been also found follinear resistoChua’s diod¢is given by
some coupled chaotic systerfs3] both when using linear
(or diffusive) coupling [2,4—§ and through driving[3,7].

. . . . 1
These results give support to the point of view that chaotic f(x)=1 bx+ = (a—b)[|x+1|—|x—1|]}, 2
behavior may even be advantageous in some situations. In 2
this context, chaos can be regarded as a reservoir of periodic

behavior that can be activated in response t0 changingherea andb are the slopes of the inner and outer regions,
stimuli or external condition§s]. , respectively, off(x). Driving is introduced through (X;)
In the present paper, we shall consider arrays of Chao“ﬁndx_ﬁxk,l for k1, while fork=1 and depending on the

systems that are coqpled through driving. In particular, Wecype of arrangement, one hag=x, for linear arrays and for
shall resort to a variant of the Pecora-Carroll meth8d closed loopst;=xy

recently introduced in Ref.7]. The main advantage of this An experimental setup formed by four Chua circuits
method is that the dynamical evolution of the driving signal hose components are defined I64(C,,L,ro,R)=(12 nF

in the response is not suppressed and thus one can consi &o nF, 10 mH, @, 1 kQ), has been built to implement Egs.
more general arrangements_ of th? conne(_:ted systems, SUCh(i‘i The tolerances of the components employed are 10% for
cascade$9]. We haye applied this coup,llng_ mgthpd to the inductances, 5% for capacitances, and 1% for resistances.
case of_one-d|me_nS|o_naI arrays of Chua’s cireuits In the Chr"l'T'he experiment has been designed in such a way that one
otic regime, gon3|der|ng_ two different topologies, I_mear.andcan connect the individual circuits in a variety of ways. The
in & loop, quite exhaustively, both through numerical SIMU~6ircuits were sampled with a digital oscilloscofidewlett-

Iatiqn and experimentally. This method might allqw me to Packard 54601with a maximum sample rate of 20 million
design in a more systematic and compact way circuits thaéamples per sec, with 8-bit A/D resolution, and a record

can be employed as ChaOt!C filters for secure Commun'caﬁangth of 4000 points. Figure 1 shows the experimental de-
tions[9,10] or as cells potentially useful for arrays of cellular

neural network§CNN) [11].

The basic unit(cell) of our study is Chua’s circuit, an
electronic oscillator that has been shown to exhibit a variety k+1 —<}— —<— k-1
of bifurcation and chaotic phenomef2]. The dynamics of
an array withN units can be modeled by a system dfl 3
first-order autonomous nonlinear differential equations that N, R N,
in explicit rescaled dimensionless fortimcluding coupling AN~ <l—+
are written as Y Xy

, _ L C, C
kX = alyk—x—f(Xi) ] % ' @ N:
Y= Xk— Yt Zk k=1,... N, (1

2= — BYx— vZ
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simulations and experiments, are different depending on
whether one considers linear arrays or closed loops. In the
first case, and after some transient time, the array attains a
uniform synchronized chaotic state. Thus, Fig. 2 presents the
results corresponding to the potential difference along ca-
pacitorC; (that in the dimensionless form of the circuit cor-
responds tx) for the last circuit,x,, versus the same vari-
able for the first circuitx,, obtained in the experiment for a
linear array of four elements. Synchronization is expressed
by the straight linex,=x;. It is interesting to note that syn-
chronization is quite robust along the array. This feature is
X1 not obvious at all, because one could expect that the toler-
ances inherent in electronic components would cause this

FIG. 2. Representation of the voltage through capac€itpcor- phenomenor_1 to_ deteriorate along the_ array. .
responding to the fourth circuit,, vs the same quantity for the first ~ Synchronization does not happen instantaneously, but, in-

circuit, x,, for an experimental setting of four circuits connected Steéad, takes place assgnchronization wavepreads through

linearly; see Eq(1). This plot indicates synchronization among the the system. Figure 3 shows the difference in voltages
circuits. along capacitolIC, (taken in nodeN,, see Fig. 1 between

consecutive circuitsAx,=|x,—Xx_1|) as a function of time

sign of one Chua circuit coupled with its neighbors accord-and the number of circuits in a linear array. Note that two
ing to Eq.(1) of the system. consecutive circuits synchronize after a given time has

The following set of parameters has been used for thgassedthis happens whedx—0), thus defining the syn-
numerical calculations throughout the present contributionchronization wave. This wave can be characterized by a con-
(a,B,7,a,0)=(8.23,10,0.09;- 1.10,— 0.67), since they cor- stant velocityVy. Contrary to the case of classical waves in
respond to the components used in the experimental circuitinear systems or autowaves in dissipative mddi3|, cha-
The set of equation&l), together with the suitable boundary otic synchronization waves may carityformation through
conditions, zero flux for linear arrays and periodic for closed-the array of cells. This information is encoded through
loop arrays(or rings, have been integrated by using a stablechanges in the initial conditions at urit=1, which will
fixed-step fourth-order Runge-Kutta method with a step sizalefine different outputs at the opposite side of the array,
of At=0.001 time unitgt.u.) (1 t.u=0.1 us). In all numeri- k=N, for a time longer thaN/Vg. Thus, the study of this
cal and experimental simulations shown here, the isolatedynchronization wave is very interesting for the comprehen-
systems have been allowed to evolve without coupling for arsion of the transmission of signals in CNNs, which can be
amount of time such that the system dynamics takes place insed for signal processing.
the double-scroll(chaotig attractor. Then the circuits are For linear arrays, it is found that the velocity of this syn-
connected with a certain topology in the form described bychronization wave depends essentially on the highest trans-
Eq. (1). verse Lyapunov exponent characterizing two coupled sys-

The results obtained in this work, through both numericaltems. The transverse Lyapunov spectrum, a generalization
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FIG. 3. Spatio-temporal pattern of the differ-
ences between the signals of the contiguous cir-
cuits in an open linear array consisting of 25 cir-
cuits. The synchronization wave is defined by the
conditionAx—0.
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FIG. 4. Representation of the mean velocity of synchronization
V, vs the highest transverse Lyapunov exponent, showing the linear

relationship between these two quantities. FIG. 5. Representation of the voltage across capaCitdor the

fourth circuit,x,, vs the same quantity for the first circutt,, for an

. ) . experimental setting of four Chua circuits coupled through the non-
[6] of the concept of conditional exponents, is obtained for"near element Eq(1) in a ring geometry.

the connection given in Eq1) by taking the real part of the

eigenvalues of the matri], transform technique to yield a matrix that Hdsblocks with

dimension X 3. TheseN block matrices control the stability
Ta 0 of the N Fourier modes corresponding to small deviations
7- 1 -1 1 3) about the synchronized state. The firgmiform) mode
0 -8B —vy ' k=0 is the synchronized state itself, and this matrix is the
same as that of an isolated Chua circuit. The otNerl
matrices allow one to determine the stability of the synchro-

where one does not need to perform the uguabe limit, nization manifold against transverse perturbati¢f$ in
since the coefficients of the matrix are constant for this parterms of the corresponding transverse Lyapunov exponents,
ticular arrangement. Note that this matrix is obtaifiélby ~ since, in principle, the problem is nonlinear. These matrices
setting to zero the entries corresponding to the connection iRave the forn{14]

the linearized approximation to the flofthe connection en-

ters into the nonlinear elemeftx) in Eq. (1), and this is the —a[1+f'(x)expi 2mk/IN)] a0

reason why the matrix3) has only constant coefficients (0 _ 1 -1 1

If one recalls that small deviations from the synchronized c= 0 '
state behave in the formx=Zx, this implies that B
x(t)=x(0)exp(At), where A is obtained by transforming (4)
matrix Z to diagonal form. One may assume that this expres-
sion is dominated by the first term, i.e.x(t) where the indek runs ak=1,...,(N—1). It can be shown

~x(0)exp(|r4Jt), which defines a relaxational process in athat C'V) is the most relevant matrix in determining the sta-
time scaler=1/]\,|. Synchronization takes place between bility of the uniform synchronized state.
contiguous circuits and, since space is discrete with constant The present derivation, but also numerical simulations
spacing, this implies that the velocity of synchronization isand the experiments performed with the electronic setup,
of the order of the inverse of the time needed for a singleagree in that the uniform synchronized state is stable when
circuit to synchronizey, i.e., of the order of ik,|. This  the number of unit in the ring is low enough, until for a
implies the linear relationshigs~ 1/7~|\,|. Figure 4 shows certain sizeN. the synchronized state loses stability. This
a graphical representation Wf versus\; that allows one to numberN. is 5 for a ring of identical Chua circuits with the
verify this linear relationship. specifications used in the present work, both by finding the
In the case of closed loops, the behavior is more complexyapunov spectrum of£®) and by numerical simulation.
due to the presence of feedback. However, in this case sténastead, experimentally one finds tHdf=4 in the coupled
bility can be analyzed just based on theoretical grounds, exelectronic circuitgsee, e.g., Fig. )5 which can be explained
tending slightly the approach of R¢B]. The idea is to write by performing realistic simulations that include the toler-
the linearized evolution equations for small deviationsances in the electronic components. The behavior found in
around the synchronized statihis yields a 3NX3N prob-  Fig. 5 is characterized by delayed synchronization between
lem for N coupled Chua circui}s This matrix will be almost  contiguous circuits that differ by a nonconstant time shift.
block diagonal, since it will hav®l blocks with the form of In conclusion, we have presented experimental results,
Eq. (3), but will have some sparse off-diagonal elements corsupplemented by numerical simulations and some analytical
responding to the interaction of thkth node with the reasoning, about the behavior of small networks of Chua
(k—1)th due to the coupling term. circuits in the chaotic regime, coupled through synchronizing
The fact that the first node is coupled to the last oneunidirectional connections. For linear arrays, one observes a
implies that the structure of this matrix is circulant and so itsynchronization wave that propagates throughout the system.
can be formally decoupled by means of the discrete Fourielt is argued that such a wave may be useful for information
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transmission or processing, as one is able to send pulses ©hese arrays can also be regarded as chaotic cellular neural

information in a finite time between the two extremes of thenetworks[11], which could be useful in some computational

array such that one encodes through the initial conditions ofasks. This kind of model can also be considered as a sim-

the system. The stability of rings has been also studied anglified representation of neuron assemblies, incorporating the

discussed. unidirectional character of the connections as found in real-
Regarding p_ossible future extensions _of the present Worlqty_ The symptoms of chaotic behavior in the bréirY] and

one may mention the study of parallel fib¢fb], but now  the important role of synchronization in perceptive processes

composed out of qhaotic units, that might.be relevant in they, mammalg 18] indicate that the role of chaos may be con-
study of the behavior of neuronal assemblies. One could alsgyctive in these casé8].

study two-dimensional networks formed by chaotic units that

would offer a discrete representation of spatially extended We wish to thank H. Alvarez for his help with the experi-
systems with this type of dynamics. In the case in which themental part of this paper and J."&oez for useful discus-
local dynamics is excitable, some studies have already resions. This work was supported in part by DGICY3pain
vealed many interesting spatiotemporal phenomgté. Research Grant No. PB95-0570¢M.A.M.).
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