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Chaotic synchronization has been observed experimentally and numerically in arrays of Chua’s circuits,
arranged in both linear and ring geometries, that are coupled by using the method recently introduced by
Güémez and Matı´as@Phys. Rev. E52, R2145~1995!#. For open linear geometries, the chaotic cells are seen to
synchronize consecutively as asynchronization wavespreads through the array. Instead, for circular loops it is
found that there is a critical number of cells above which the uniform synchronized state is not stable.
@S1063-651X~96!51210-9#

PACS number~s!: 05.45.1b

Synchronization among coupled nonlinear oscillators is
pervasive in nature~see, e.g., Ref.@1#!. Although counterin-
tuitive at first sight, synchronization has been also found for
some coupled chaotic systems@2,3# both when using linear
~or diffusive! coupling @2,4–6# and through driving@3,7#.
These results give support to the point of view that chaotic
behavior may even be advantageous in some situations. In
this context, chaos can be regarded as a reservoir of periodic
behavior that can be activated in response to changing
stimuli or external conditions@8#.

In the present paper, we shall consider arrays of chaotic
systems that are coupled through driving. In particular, we
shall resort to a variant of the Pecora-Carroll method@3#
recently introduced in Ref.@7#. The main advantage of this
method is that the dynamical evolution of the driving signal
in the response is not suppressed and thus one can consider
more general arrangements of the connected systems, such as
cascades@9#. We have applied this coupling method to the
case of one-dimensional arrays of Chua’s circuits in the cha-
otic regime, considering two different topologies, linear and
in a loop, quite exhaustively, both through numerical simu-
lation and experimentally. This method might allow me to
design in a more systematic and compact way circuits that
can be employed as chaotic filters for secure communica-
tions@9,10# or as cells potentially useful for arrays of cellular
neural networks~CNN! @11#.

The basic unit~cell! of our study is Chua’s circuit, an
electronic oscillator that has been shown to exhibit a variety
of bifurcation and chaotic phenomena@12#. The dynamics of
an array withN units can be modeled by a system of 3N
first-order autonomous nonlinear differential equations that
in explicit rescaled dimensionless form~including coupling!
are written as

kẋk5a@yk2xk2 f ~xk!#
ẏk5xk2yk1zk
żk52byk2gzk

J k51, . . . ,N, ~1!

where a5C2 /C1, b5C2 /(LG
2), and g5(C2r 0)/(LG).

The three-segment piecewise-linear characteristic of the non-
linear resistor~Chua’s diode! is given by

f ~x!5H bx1
1

2
~a2b!@ ux11u2ux21u#J , ~2!

wherea andb are the slopes of the inner and outer regions,
respectively, off (x). Driving is introduced throughf (xk)
andxk5xk21 for kÞ1, while fork51 and depending on the
type of arrangement, one hasx15x1 for linear arrays and for
closed loopsx15xN .

An experimental setup formed by four Chua circuits
whose components are defined by (C1 ,C2 ,L,r 0 ,R)5~12 nF,
100 nF, 10 mH, 9V, 1 kV!, has been built to implement Eqs.
~1!. The tolerances of the components employed are 10% for
inductances, 5% for capacitances, and 1% for resistances.
The experiment has been designed in such a way that one
can connect the individual circuits in a variety of ways. The
circuits were sampled with a digital oscilloscope~Hewlett-
Packard 54601! with a maximum sample rate of 20 million
samples per sec, with 8-bit A/D resolution, and a record
length of 4000 points. Figure 1 shows the experimental de-
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FIG. 1. Schematic diagram of an experimental Chua circuit
coupled with its neighbors through the nonlinear element.
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sign of one Chua circuit coupled with its neighbors accord-
ing to Eq.~1! of the system.

The following set of parameters has been used for the
numerical calculations throughout the present contribution:
(a,b,g,a,b)5(8.23,10,0.09,21.10,20.67), since they cor-
respond to the components used in the experimental circuit.
The set of equations~1!, together with the suitable boundary
conditions, zero flux for linear arrays and periodic for closed-
loop arrays~or rings!, have been integrated by using a stable
fixed-step fourth-order Runge-Kutta method with a step size
of Dt50.001 time units~t.u.! ~1 t.u.50.1ms!. In all numeri-
cal and experimental simulations shown here, the isolated
systems have been allowed to evolve without coupling for an
amount of time such that the system dynamics takes place in
the double-scroll~chaotic! attractor. Then the circuits are
connected with a certain topology in the form described by
Eq. ~1!.

The results obtained in this work, through both numerical

simulations and experiments, are different depending on
whether one considers linear arrays or closed loops. In the
first case, and after some transient time, the array attains a
uniform synchronized chaotic state. Thus, Fig. 2 presents the
results corresponding to the potential difference along ca-
pacitorC1 ~that in the dimensionless form of the circuit cor-
responds tox) for the last circuit,x4, versus the same vari-
able for the first circuit,x1, obtained in the experiment for a
linear array of four elements. Synchronization is expressed
by the straight linex45x1. It is interesting to note that syn-
chronization is quite robust along the array. This feature is
not obvious at all, because one could expect that the toler-
ances inherent in electronic components would cause this
phenomenon to deteriorate along the array.

Synchronization does not happen instantaneously, but, in-
stead, takes place as asynchronization wavespreads through
the system. Figure 3 shows the difference in voltagesDx
along capacitorC1 ~taken in nodeN1, see Fig. 1! between
consecutive circuits (Dxk5uxk2xk21u) as a function of time
and the number of circuits in a linear array. Note that two
consecutive circuits synchronize after a given time has
passed~this happens whenDx→0), thus defining the syn-
chronization wave. This wave can be characterized by a con-
stant velocityVs . Contrary to the case of classical waves in
linear systems or autowaves in dissipative media@13#, cha-
otic synchronization waves may carryinformation through
the array of cells. This information is encoded through
changes in the initial conditions at unitk51, which will
define different outputs at the opposite side of the array,
k5N, for a time longer thanN/Vs . Thus, the study of this
synchronization wave is very interesting for the comprehen-
sion of the transmission of signals in CNNs, which can be
used for signal processing.

For linear arrays, it is found that the velocity of this syn-
chronization wave depends essentially on the highest trans-
verse Lyapunov exponent characterizing two coupled sys-
tems. The transverse Lyapunov spectrum, a generalization

FIG. 2. Representation of the voltage through capacitorC1 cor-
responding to the fourth circuit,x4, vs the same quantity for the first
circuit, x1, for an experimental setting of four circuits connected
linearly; see Eq.~1!. This plot indicates synchronization among the
circuits.

FIG. 3. Spatio-temporal pattern of the differ-
ences between the signals of the contiguous cir-
cuits in an open linear array consisting of 25 cir-
cuits. The synchronization wave is defined by the
conditionDx→0.
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@6# of the concept of conditional exponents, is obtained for
the connection given in Eq.~1! by taking the real part of the
eigenvalues of the matrix@7#,

Z5S 2a a 0

1 21 1

0 2b 2g
D , ~3!

where one does not need to perform the usualt→` limit,
since the coefficients of the matrix are constant for this par-
ticular arrangement. Note that this matrix is obtained@7# by
setting to zero the entries corresponding to the connection in
the linearized approximation to the flow~the connection en-
ters into the nonlinear elementf (x) in Eq. ~1!, and this is the
reason why the matrix~3! has only constant coefficients!.

If one recalls that small deviations from the synchronized
state behave in the formẋ5Zx, this implies that
x(t)5x(0)exp(Lt), whereL is obtained by transforming
matrixZ to diagonal form. One may assume that this expres-
sion is dominated by the first term, i.e.,x(t)
;x(0)exp(2ul1ut), which defines a relaxational process in a
time scalet51/ul1u. Synchronization takes place between
contiguous circuits and, since space is discrete with constant
spacing, this implies that the velocity of synchronization is
of the order of the inverse of the time needed for a single
circuit to synchronize,t, i.e., of the order of 1/ul1u. This
implies the linear relationshipVs;1/t;ul1u. Figure 4 shows
a graphical representation ofVs versusl1 that allows one to
verify this linear relationship.

In the case of closed loops, the behavior is more complex
due to the presence of feedback. However, in this case sta-
bility can be analyzed just based on theoretical grounds, ex-
tending slightly the approach of Ref.@6#. The idea is to write
the linearized evolution equations for small deviations
around the synchronized state~this yields a 3N33N prob-
lem forN coupled Chua circuits!. This matrix will be almost
block diagonal, since it will haveN blocks with the form of
Eq. ~3!, but will have some sparse off-diagonal elements cor-
responding to the interaction of thekth node with the
(k21)th due to the coupling term.

The fact that the first node is coupled to the last one
implies that the structure of this matrix is circulant and so it
can be formally decoupled by means of the discrete Fourier

transform technique to yield a matrix that hasN blocks with
dimension 333. TheseN block matrices control the stability
of the N Fourier modes corresponding to small deviations
about the synchronized state. The first~uniform! mode
k50 is the synchronized state itself, and this matrix is the
same as that of an isolated Chua circuit. The otherN21
matrices allow one to determine the stability of the synchro-
nization manifold against transverse perturbations@6# in
terms of the corresponding transverse Lyapunov exponents,
since, in principle, the problem is nonlinear. These matrices
have the form@14#

C~k!5S 2a@11 f 8~x!exp~ i 2pk/N!# a 0

1 21 1

0 2b 2g
D ,

~4!

where the indexk runs ask51, . . . ,(N21). It can be shown
thatC(1) is the most relevant matrix in determining the sta-
bility of the uniform synchronized state.

The present derivation, but also numerical simulations
and the experiments performed with the electronic setup,
agree in that the uniform synchronized state is stable when
the number of unitsN in the ring is low enough, until for a
certain sizeNc the synchronized state loses stability. This
numberNc is 5 for a ring of identical Chua circuits with the
specifications used in the present work, both by finding the
Lyapunov spectrum ofC(1) and by numerical simulation.
Instead, experimentally one finds thatNc54 in the coupled
electronic circuits~see, e.g., Fig. 5!, which can be explained
by performing realistic simulations that include the toler-
ances in the electronic components. The behavior found in
Fig. 5 is characterized by delayed synchronization between
contiguous circuits that differ by a nonconstant time shift.

In conclusion, we have presented experimental results,
supplemented by numerical simulations and some analytical
reasoning, about the behavior of small networks of Chua
circuits in the chaotic regime, coupled through synchronizing
unidirectional connections. For linear arrays, one observes a
synchronization wave that propagates throughout the system.
It is argued that such a wave may be useful for information

FIG. 4. Representation of the mean velocity of synchronization
Vs vs the highest transverse Lyapunov exponent, showing the linear
relationship between these two quantities.

FIG. 5. Representation of the voltage across capacitorC1 for the
fourth circuit,x4, vs the same quantity for the first circuit,x1, for an
experimental setting of four Chua circuits coupled through the non-
linear element Eq.~1! in a ring geometry.
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transmission or processing, as one is able to send pulses of
information in a finite time between the two extremes of the
array such that one encodes through the initial conditions of
the system. The stability of rings has been also studied and
discussed.

Regarding possible future extensions of the present work,
one may mention the study of parallel fibers@15#, but now
composed out of chaotic units, that might be relevant in the
study of the behavior of neuronal assemblies. One could also
study two-dimensional networks formed by chaotic units that
would offer a discrete representation of spatially extended
systems with this type of dynamics. In the case in which the
local dynamics is excitable, some studies have already re-
vealed many interesting spatiotemporal phenomena@16#.

These arrays can also be regarded as chaotic cellular neural
networks@11#, which could be useful in some computational
tasks. This kind of model can also be considered as a sim-
plified representation of neuron assemblies, incorporating the
unidirectional character of the connections as found in real-
ity. The symptoms of chaotic behavior in the brain@17# and
the important role of synchronization in perceptive processes
in mammals@18# indicate that the role of chaos may be con-
structive in these cases@8#.
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